Bevezető a komplex számokba

A magyar Wikipédia első mondata:

A komplex számok halmaza a valós számhalmaz olyan bővítése, melyben elvégezhető a negatív számból való négyzetgyökvonás (a valós számok halmazával ellentétben, ahol negatív számnak nincs négyzetgyöke), valamint ennek folyományaként más valósokon belül nem értelmezett műveletek is értelmezhetővé válnak.

Lejjebb halmazelméleti, geometriai és algebrai modellben is levezeti a komplex számokat, ebből kettőt itt is szerepeltetek most:

Tetszik érteni? Nem? Nem baj. Az angol nyelvű szócikk picit szemléletesebb. Harmadik mondat:

Complex numbers extend the idea of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part.

Szerintem ez a jó indító mondata a témának, persze ez sem szemléletes annyira, mint Steven Wittens január 5-én publikált “How to Fold a Julia Fractal” című posztja, ami egy csodálatos poszt, egyben tökéletesen fejezi ki mindazt, amiről a blogolás szól. Láthatóan élvezi a témát, szeretne valamit továbbadni belőle és időt, energiát nem sajnálva egy olyan posztot ad ki ingyen, amit nemhogy pénzért kéne árulni, de egyenesen drágán. Vagy épp ellenkezőleg: a középiskolai matematika órán le kéne adni.

Wittens korábban már járt nálunk (először, másodszor, harmadszor, negyedszer), nem véletlen mostani előfordulása sem. Nem csinál mást, mint egy interaktív bevezetést a komplex számok világába a WebGL segítségével. Csodálatosan felépíti a történetet, megmutatja interaktív, mozgó, forgatható ábrákon a világot, aztán továbblép egészen a Mandelbrot és Julia-halmazok ábrázolásáig.

Tényleg csodálatos és érdemes Chrome-ban végignézni a posztot, végigkattintgatni a dolgokat, annyira vizuális, annyira megfogható, hihetetlen.

Őrületes számomra, hogy a magyar oktatási rendszer és matematikai tananyag mennyire elfuserált, elbaszott szar ehhez a poszthoz képest. Most ezzel nem akarok megsérteni senkit, de egy ilyen reprezentáció és szemléltetés azt gondolom, hogy sok gyereknek meg tudná hozni a kedvét a téma iránt, semmint a dolgozatok, feleletek és a bizonyítások bemagolása.

Én egyébként sokat köszönhetek a poroszos matematika oktatásnak is, viszont azt is látom, mennyit nem. Nekem úgy kellett megtanulnom a dolgokat, hogy kilöktek az ablakon, tessék, Józsikám, szállj. (Jól oda is baszódtam a földhöz néhány esetlen szárnycsapás után, emlékszem, a középiskolában az első matematika dolgozatom kettes volt, akkor úgy éreztem: mindennek vége. Game over 8 biten, baszki, ennyi volt. Ha akkor lett volna egy Macem és Steven Wittens posztja, sokkal kiegyensúlyozottabban gépelnék most!)

Érdekes kérdés ez egyébként: a magyar módszerrel, a felügyelettel és szigorral sokkal összeszedettebben tanul az ember, viszont az amerikai oktatási rendben játékká, érthető játékká válik az egész. Nagy kérdés számomra az, hogy ez utóbbival el lehet-e érni eredményt, rigorózus rendet?

Azt hiszem, hogy igen. Az előbbivel egészen biztosan, csak annak két “aprócska” baja van: az egyik az, hogy aki nem veszi fel a tempót, az kihullik – ilyet is láttunk. A másik baja pedig az, hogy mint minden gyógyszernek, ennek is van mellékterméke. Nem is máshogy hívják, mint úgy, hogy szorongás.

Függöny.